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> head(hmohiv)

ID time age drug censor entdate enddate

1 1 5 46 0 1 5/15/1990 10/14/1990

2 2 6 35 1 0 9/19/1989 3/20/1990

3 3 8 30 1 1 4/21/1991 12/20/1991

4 4 3 30 1 1 1/3/1991 4/4/1991

5 5 22 36 0 1 9/18/1989 7/19/1991

6 6 1 32 1 0 3/18/1991 4/17/1991

> m1 <- coxph(Surv(time,censor)~drug,data=hmohiv)

> coef(summary(m1))[3]

[1] 0.2418138

> mw <- coxph(Surv(time,censor)~drug,data=hmohiv, weights = w)

> coef(summary(mw))[3]

[1] 8.123295

> summary(w)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 0.00 0.00 1.00 0.00 79.34
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Objective

1. We have target probability weights, w∗.

2. The weighted estimate has large variance.

3. We estimate the weights closest to w∗ within a variance constraint.

We propose a general method to estimate optimal probability weights based
on the solution of a nonlinear constrained optimization problem.
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Introduction

In statistics, probability weights are used in many areas of research includ-
ing

I complex survey designs,

I missing data analysis,

I adjustment for confounding factors, etc.

Methods have been proposed to alleviate the sometimes excessive impreci-
sion of weighted inference [1, 2, 3, among others]. In medical sciences the
most frequent approach is weight trimming, or truncation, which consists
of replacing outlying weights with less extreme ones.
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Optimal probability weights

Let θ̂w∗ be an unbiased estimator for a population parameter θ∗ that uses
weights w∗ = (w∗1 , . . . ,w

∗
n )T , with 1Tw∗ = 1 and w∗ ≥ 0. Let σw∗

indicate the standard error of θ̂w∗ and σ̂w∗ an estimator for it. Instead of
trimming the weights, we suggest deriving the weights ŵ that are closest
to w∗ with respect to the Euclidean norm ‖w −w∗‖, under the constraint
that the estimated standard error σ̂ŵ be less than or equal to a specified
constant ξ > 0.

minimize
w∈Rn

‖w − w∗‖ (1)

subject to σ̂w ≤ ξ (2)

1Tw = 1 (3)

w ≥ 0 (4)

When a solution ŵ to problem (1)-(4) exists, constraint (2) guarantees
that the estimated standard error of the estimator with weights ŵ is less
than or equal to ξ. Constraints (3) and (4) guarantee that the optimal
weights ŵ are bounded and non-negative, respectively.
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Properties

(i) Consistency. The probability that θ̂ŵ = θ̂w∗ converges to one if σ̂w ,
the estimator for the standard error for the weighted estimator,
converges to zero as the sample size tends to infinity, for any set of
probability weights ŵ and any constant value ξ.

(ii) Minimum-bias estimator. The optimally-weighted estimator θ̂ŵ ,
obtained using ŵ, is the the estimator with minimum bias among all
weighted estimators with standard error less or equal than ξ.

(iii) Uniqueness. If the nonlinear constrained optimization problem is
convex, then the set of optimal weights ŵ is unique. In this case, by
property (i) and (ii), the optimally-weighted estimator is the unique
minimum-bias estimator among all weighted estimators with
constrained precision.
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Lagrange multiplier

The Lagrange multiplier λ in constraint (6) and the value of the objective
function at the optimum can be used to choose the level of precision ξ.
More specifically, large values of λ suggest that minimal changes in ξ would
cause large changes in the objective function. Large values of the objective
function at the optimum indicate that the set of optimal weights are far
from the target set.

minimize
w∈Rn

‖w − w∗‖ (5)

subject to σ̂w ≤ ξ (6)

1Tw = 1 (7)

w ≥ 0 (8)
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Case study

We evaluated the effect of early ini-
tiation on time to virological failure
across subgroups. We used data from
the Swedish InfCare HIV registry.

Four known factors for HIV-treatment

progression were considered:

1 logarithm of viral load, ln(VL),

at treatment initiation,

2 age at treatment initiation,

3 route of transmission, and

4 gender.

Table: Subgroups considered for the
analysis of the optimal timing of HIV
treatment initiation.

Subgroup ln(VL) Age Route Gender

1 10.5 31 IDU Female
2 10.5 31 IDU Male
3 10.5 31 Hetero Female
4 10.5 31 Hetero Male
5 10.5 31 MSM Male
6 10.5 31 Other Female
7 10.5 31 Other Male
8 10.5 46 IDU Female
9 10.5 46 IDU Male
10 10.5 46 Hetero Female
11 10.5 46 Hetero Male
12 10.5 46 MSM Male
13 10.5 46 Other Female
14 10.5 46 Other Male

Early initiation was defined as HIV-treatment initiation with 500+ CD4 cells/µ.
Virological failure happens when the treatment fails to suppress the HIV virus.

8 / 19



Target populations

We defined the target populations fj (x), j = 1, . . . , 14,

fj (x) =

{
φ (ln(VL)− 10.5)φ (age − µj ) if x =

(
ln(VL), age, routej , genderj

)
0 otherwise

(9)

where x = (ln(VL), age, route, gender), and φ is the standard normal dis-
tribution. Standard deviations were set equal to 1.

Subgroup (j) ln(VL) Age (µj ) Route Gender

1 10.5 31 IDU Female
2 10.5 31 IDU Male
3 10.5 31 Hetero Female
4 10.5 31 Hetero Male
5 10.5 31 MSM Male
6 10.5 31 Other Female
7 10.5 31 Other Male
8 10.5 46 IDU Female
9 10.5 46 IDU Male
10 10.5 46 Hetero Female
11 10.5 46 Hetero Male
12 10.5 46 MSM Male
13 10.5 46 Other Female
14 10.5 46 Other Male
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Optimal weights

Target weights were calculated as

ŵ∗j = fj (x) /f̂0 (x) , (10)

where f̂0 (x) is the multivariate density kernel estimate for ln(VL), age,
route of transmission and gender in the sampled population. For each
target population, we computed the optimal probability weights ŵ by solv-
ing the nonlinear constrained problem, where σ̂w denotes the estimated
standard error of the estimator for the parameter βw in

λi (t) = λ0 (t) exp
(
βw I

[
CD4i,0∈(500+)

])
, (11)

i = 1, . . . , n. The indicator function I
[
CD4i,0∈(500+)

]
is equal to 1 if

individuals started treatment with CD4 cell count above 500 cells/µL, and
0 otherwise. We evaluated values for the Lagrange multiplier λ and the
objective function over a range of different values for ξ starting from high
precision, ξ = 1, to the precision of the unweighted estimator, ξ = σ̂β,w∗ ,
when the constraint is inactive.
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Figure: Optimal timing of HIV treatment initiation across subgroups. Lagrange multiplier in (2),

square root of the objective function, target-weighted coefficient β̂w∗ , variance for β̂w∗ ,

optimally-weighted coefficient β̂ŵ , variance for β̂ŵ , and chosen level ξ.
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Conclusions

I Probability weights are used in many settings;

I The variance of weighted estimators can be large;

I The proposed method can estimate the probability weights closest to
the target weights within a variance constraint.
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A1: Target weights estimation

We calculated the set of target weights as

ŵ∗j = fj (x) /f̂0 (x) . (12)

We used generalized product kernels [4] to estimate f̂0 (x). The generalized
product kernel function for the vector x , is the product of each kernel
function, where continuous variables use the second order Gaussian kernel
function, and discrete variables use the discrete kernel function suggested
by [5]. We used the data-driven method of bandwidth selection for the
generalized product kernels estimator developed by [6]. The R package
“np” [7] was used in the analyses.
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A2: Optimization algorithm

We solved the nonlinear constrained mathematical optimization problems
with a primal-dual interior point algorithm.
Specifically, the R interface of Ipopt [8], “Ipoptr”, was used. “Ipoptr”
solves general large-scale nonlinear constrained optimization problems. The
MA57 sparse symmetric system [9] was used as a line-search method within
Ipopt.
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A3: Simulations

In each scenario we randomly generated 1,000 samples each of which
comprised 100 observations from a normally-distributed variable under
the following model: yi ∼ N(20 + 4xi , 5), where i = 1, . . . , 100, and
xi ∼ beta(xi | α0, β0), a beta distribution with parameters α0 and β0.
The target weights were defined as

w∗i =
beta(xi | α1, β1)

beta(xi | α0, β0)
. (13)

We considered fifty different scenarios, constructed by combining the fol-
lowing parameter values: α0 = {1, 2, 3, 4, 5}, β0 = {1, 2, 3, 4, 5}, and
(α1, β1) = {(2, 5), (5, 5)}.
We considered two estimators for the weighted mean:

I the optimal estimator θ̂ŵ = yT ŵ ,

I the trimmed estimator θ̂w = yTw .
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Simulations
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Figure: Left-hand-side panels: mean squared error ratio between trimmed and
optimally weighted estimators. Right-hand-side panels: mean squared error
(solid line), variance (dotted), and bias (dashed) of the optimally weighted
estimator θ̂ŵ , for different values of ξ in the scenarios.
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A4: Proof of Property (ii) Minimum-bias estimator.

Suppose that the target weighted estimator, θ̂w∗ , is the solution to the
weighted equation

n∑
i=1

w∗i hi (θ̂w∗) = 0, (14)

where hi is a known function of the sample data and the parameter θ.
Applying a Taylor series expansion of hi (θ̂ŵ ) around θ̂w∗ , it can be shown
that the optimally-weighted estimator is the solution to

n∑
i=1

ŵi

[
hi (θ̂w∗) + h′i (θ̂w∗)(θ̂ŵ − θ̂w∗) + O((θ̂ŵ − θ̂w∗)2)

]
= 0. (15)
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A2: Proof of Property (ii) Minimum-bias estimator.

From equation 15, considering that the remainder O converges quadrati-
cally to zero as (θ̂ŵ − θ̂w∗) tends to zero, and that E (θ̂w∗) = θ∗, the bias
of the optimally-weighted estimator is shown to be approximately equal to

E (θ̂ŵ − θ∗) = E (θ̂ŵ − θ̂w∗) + E (θ̂w∗)− θ∗ ≈ −E

[
(ŵ − w∗)Th(θ̂w∗)

ŵT∇wh(θ̂w∗)

]
,

(16)
where ∇wh(θ̂w∗) is the gradient of the vector (h1(θ̂w∗), . . . , hn(θ̂w∗))T .
The optimally-weighted estimator is approximately unbiased for θ∗ if the
vectors (ŵ − w∗) and h(θ̂w∗) are orthogonal. Finally, by property (i),
minimizing the objective function ‖w − w∗‖ is equivalent to minimizing
the bias of the optimally-weighted estimator with respect to the target
parameter θ∗, yielding the minimum-bias estimator among all weighted
estimators with precisions less or equal than ξ.

19 / 19View publication statsView publication stats

https://www.researchgate.net/publication/313726178

	Motivational example
	Introduction
	Optimal probability weights
	Properties
	Lagrange multiplier

	Case study
	Target populations
	Optimal weights

	Conclusions
	References
	Appendix
	Target weights estimation
	Optimization algorithm
	Simulations
	Proofs


